If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-80x+320=0
a = 4; b = -80; c = +320;
Δ = b2-4ac
Δ = -802-4·4·320
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-16\sqrt{5}}{2*4}=\frac{80-16\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+16\sqrt{5}}{2*4}=\frac{80+16\sqrt{5}}{8} $
| -4n-24=-224 | | 2(3.14)9+2(3.14)^2=a | | k+k/2=-1 | | k/1+k/2=-1 | | 23=14+16+y | | 11r+11=132 | | y-18-24=13 | | y-18-34=13 | | 6(2x+1)=86 | | 31.9-x=-18 | | H(x)=9 | | 3c–7=8 | | 3x^2+x−1=(2x+9)(x−1) | | 3x2+x−1=(2x+9)(x−1) | | −2x2+25=7 | | 3/4r-14=3/8 | | 18+4y=-6-12 | | 2x-8+4x+2=10 | | –7q=–9−6q | | -2m^2-14m+5=0 | | 2(-2+x)=-4.5-1/2 | | 21=2x√3 | | C=12.00+0.08x | | 3(x+4)+2x-1= | | 121-y=197 | | 8.1+y=3.9 | | 12x=11/12 | | 1,134=(x+19)6 | | 5x+10+2x–6+x–=1 | | x÷3+8=20 | | 5c(c-2)=6-3c | | –28+4z=–96 |